Can science develop adequate, quantitative theories of living systems, such that experiment and theory work hand-in-glove, like much of modern fundamental physics?  This is the question that concerns us: we both apply and develop concepts from statistical and theoretical soft-condensed matter physics, as well as applied mathematics, in order to describe living matter.

The focus spans a range of length-scales, from molecular signalling on a sub-cellular scale, to emergent phenomena at the tissue scale and beyond.  We work closely with experimental partners, typically studying systems in which an interplay between mechanics, geometry and information-processing is important.



Peer-reviewed journals:

  • S. C. Al-Izzi & R. G. Morris, Active flows and deformable surfaces in development”, Seminars in Cell & Developmental Biology, vol. 120, pp. 44–52 (2021) (published, ArXiv:2103.12264).

  • R. G. Morris, S. Budnar, K. Husain and A. S. Yap, “Anillin: the first proofreading-like scaffold” , BioEssays, vol. 42, no. 10 (2020) (published).

  • J. Jhawar, R. G. Morris, U. R. Amith-Kumar, M. Danny Raj, T. Rogers, H. Rajendran, and V. Guttal, “Noise-induced schooling of fish” , Nat. Phys. (2020) (published, ArXiv:1903.12132).

  • S. Budnar, K. B. Husain, G. A. Gomez, M. Naghibosidat, S. Verma, R. G. Morris, and A. S. Yap, “Anillin Promotes Cell Contractility by Cyclic Resetting of RhoA Residence Kinetics”, Developmental Cell (2019) 49:6 (published, BioRxiv:282756).

  • R. G. Morris and M. Rao, “Covariant Active Hydrodynamics of Epithelial Tissue Morphology”, Phys. Rev. E, (2019) 100 022413 (published, ArXiv:1710.09110).

  • R. G. Morris, “Signatures of mechanosensitive gating”, Biophys. J., 112(1) (2016). (published, preprint).

  • R. G. Morris and M. S. Turner, “Mobility measurements probe conformational changes in membrane proteins due to tension”, Phys. Rev. Lett., 115 198101 (2015). (published, preprint).

  • R. G. Morris and T. Rogers, “Growth-induced breaking and un-breaking of ergodicity in fully-connected spin systems”, J. Phys. A: Math. Theor. 47 342003 (2014).  (published, preprint).

  • R. G. Morris, “Relaxation and curvature-induced molecular flows within multicomponent membranes”, Phys. Rev. E 89 (6), 062704 (2014). (published, preprint).

  • F. Caltagirone, S. Franz, R. G. Morris and L. Zdeborovà, “Dynamics and termination cost of spatially coupled mean-field models”, Phys. Rev. E 89 (1), 012102 (2014). (published, preprint).

  • R. G. Morris and M. Barthelemy, “Interdependent networks: the fragility of control”, Sci. Rep. 3, (2013). (published, preprint).

  • R. G. Morris and M. Barthelemy, “Transport on coupled spatial networks”, Phys. Rev. Lett. 109 (12), 128703 (2012). (published, preprint).

  • R. G. Morris and A. J. McKane, “Stability of growing vesicles”, Phys. Rev. E 83 (6), 061151 (2011). (published, preprint).

  • R. G. Morris, D. Fanelli and A. J. McKane, “Dynamical description of vesicle growth and shape change”, Phys. Rev. E 82 (3), 031125 (2010). (published, preprint).

Peer reviewed contributions to books:

  • J. Jhawar, R. G. Morris, and V. Guttal, “Deriving Mesoscopic Models of Collective Behaviour for Finite Populations”, Handb. Stat. Integr. Popul. Biol. Model. Vol. 40, Part B (Elsevier, Amsterdam, Netherlands, 2018), pp. 551–594. (published, preprint).

  • R. G. Morris and M. Barthelemy, (2014) “Spatial effects: transport on interdependent networks”, In: G. D'Agostino and A. Scala eds. “Networks of networks: the last frontier of complexity”, Springer, New York, 145-161. (published).


  • R. G. Morris and A. S. Yap, Wetting by Living Tissues”, Nat. Phys. 15:6-7 (2019). (published).